BALOK (CUBOID)
Balok adalah bangun tiga dimensi yang dibentuk oleh tiga pasang sisi yang berbentuk persegi atau persegi panjang dengan satu diantaranya berukuran berbeda
Ciri-ciri Balok :
- Balok memiliki 6 bidang sisi, dimana sisi yang sejajar sama besar
- Balok memiliki 12 rusuk, dimana rusuk yang sejajar sama panjang
- Balok memiliki 8 titik sudut yang semuanya siku-siku
- Balok memiliki 12 diagonal bidang, dimana diagonal bidang yang sejajar sama panjang
- Balok memiliki 4 diagonal ruang
- Balok memiliki 4 bidang diagonal
Ilustrasi :
Identifikasi :
- Sisi balok yang sama besar ; ABCD dan EFGH, ABFE dan CDHG, BCGF dan ADHE
- Rusuk balok ; 4 dengan panjang p, 4 dengan panjang l, 4 dengan panjang t
- Titik sudut ; A, B, C, D, E, F, G, dan H
- Diagonal bidang ; AC, BD, EG, FH, DE, AH, CF, BG, AF, BE, DG dan CH
- Diagonal ruang ; AG, BH, CE, dan DF
- Bidang diagonal ; ABGH, CDEF, ADGH, dan BCEH
Jaring-jaring Balok :
Jaring-jaring balok merupakan berbagai cara dalam menyusun enam bangun datar (persegi dan atau persegi panjang) yang dapat menghasilkan bangun balok. Adapun beberapa bentuk jaring-jaring balok dapat dilihat pada gambar berikut.
![]() |
Sumber : http://toriolo.com/jaring-jaring-balok/ |
Luas Permukaan dan Volume Balok :
Untuk menghitung luas dan volume sebuah balok digunakan rumus berikut.
Luas permukaan balok (Lp) :
Lp=2[(p×l)+(p×t)+(l×t)]
Volume balok (V)
V=p×l×t
Keterangan :
(b) Volume balok
penyelesaian :
p=6cm,l=4cm,t=3cm
Lp=2[(6×4)+(6×3)+(4×3)]
Lp=2[(24)+(18)+(12)]
Lp=2[54]
Lp=108cm2
(b) Volume (V)
V=p×l×t
V=6×4×3
V=72cm3
Pojok Fakta :
Lp=2[(p×l)+(p×t)+(l×t)]
Volume balok (V)
V=p×l×t
Keterangan :
Tentukan :
(a) Luas permukaan balok(b) Volume balok
penyelesaian :
p=6cm,l=4cm,t=3cm
(a) Luas permukaan (Lp)
Lp=2[(p×l)+(p×t)+(l×t)]Lp=2[(6×4)+(6×3)+(4×3)]
Lp=2[(24)+(18)+(12)]
Lp=2[54]
Lp=108cm2
(b) Volume (V)
V=p×l×t
V=6×4×3
V=72cm3
Pojok Fakta :
![]() |
Sumber : https://id.pinterest.com/pin/777433954396574244/ |
No comments:
Post a Comment